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Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) - Pikovsky & 

Shepelyansky, PRL (2008) - Kopidakis et al., PRL (2008) - 

Flach et al., PRL (2009) - S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) - Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL, (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The Klein – Gordon (KG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger (DNLS) equation 
We also consider the system: 
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where   and  chosen  uniformly from   is the nonlinear parameter.l 
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Conserved quantities: The energy and the norm                      of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ = Wω -W - 2,    ε = W(ε - 1)



Distribution characterization 

We consider normalized energy distributions in normal mode (NM) space  

of the νth NM (KG) or norm distributions (DNLS). 

, where Aν is the amplitude 
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measures the number of stronger excited modes in zν.  

Single mode P=1. Equipartition of energy P=N.  



Scales 
Linear case:                             , width of the squared frequency spectrum: 

 

 

 

 

 

Average spacing of squared eigenfrequencies of NMs within the range of a  
 

localization volume:  

 

Nonlinearity induced squared frequency shift of a single site oscillator 

 

 
 

 

The relation of the two scales                  with the nonlinear 
frequency shift δl determines the packet evolution. 
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Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes,  

δ: nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2~t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Single site excitations 

No strong chaos regime 

 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

 

α=0.33±0.05 (KG) 

α=0.33±0.02 (DLNS) 

 

 

Flach et al., PRL (2009)  

S. et al., PRE (2009) 

DNLS W=4, β= 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 



KG: Different spreading regimes 



Crossover from strong to weak chaos 

(block excitations) 

W=4 

 

Average over 1000 realizations! 
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α=1/3 

α=1/2 

DNLS β= 0.04, 0.72, 3.6 KG E= 0.01, 0.2, 0.75 

Laptyeva et al., EPL (2010)  

Bodyfelt et al., PRE (2011) 



Lyapunov Exponents (LEs) 

Roughly speaking, the Lyapunov exponents of a given 

orbit characterize the mean exponential rate of divergence 

of trajectories surrounding it.  

Consider an orbit in the 2N-dimensional phase space with 

initial condition x(0) and an initial deviation vector from it 

v(0). Then the mean exponential rate of divergence is:  


1

t

v(t)1
mLCE = λ = lim ln

t v(0)

λ1=0  Regular motion  (t-1) 

λ10  Chaotic motion 



KG: LEs for single site excitations (E=0.4) 



KG: Weak Chaos (E=0.4) 



KG: Weak Chaos 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (21 sites) 

E=0.21, W=4 

Block excitation (37 sites) 

E=0.37, W=3 

 

 

S., Gkolias, Flach (2013) 

arXiv:1307.0116 
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Deviation Vector Distributions (DVDs) 

Deviation vector:   

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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DVD: 



Deviation Vector Distributions (DVDs) 

Individual run 

E=0.4, W=4 

 

Chaotic hot spots  

meander through the 

system, supporting a 

homogeneity of chaos 

inside the wave packet. 



Summary 
• We predicted theoretically and verified numerically the existence of three 

different dynamical behaviors: 

 Weak Chaos Regime: δ<d,     m2~t1/3 

 Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3  

 Selftrapping Regime: δ>Δ  

• Generality of results:  

 Two different models: KD and DNLS,  

 Predictions made for DNLS are verified for both models. 

• Lyapunov exponent computations show that:  

 Chaos not only exists, but also persists. 

 Slowing down of chaos does not cross over to regular dynamics. 

 Chaotic hot spots  meander through the system, supporting a homogeneity of 

chaos inside the wave packet. 

• Our results suggest that Anderson localization is eventually destroyed by 

nonlinearity, since spreading does not show any sign of slowing down. 
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