Chaos in disordered nonlinear lattices

Haris Skokos

Physics Department, Aristotle University of Thessaloniki Thessaloniki, Greece

> E-mail: hskokos@auth.gr URL: http://users.auth.gr/hskokos/

Work in collaboration with Sergej Flach, Joshua Bodyfelt, Ioannis Gkolias, Dima Krimer, Stavros Komineas, Tanya Laptyeva

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

Outline

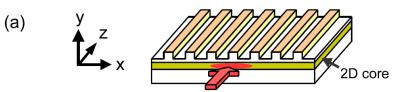
- Disordered lattices:
 - ✓ The quartic Klein-Gordon (KG) model
 - ✓ The disordered nonlinear Schrödinger equation (DNLS)
- Different dynamical behaviors
- Numerical results
 - ✓ Wave packet evolution
 - ✓ Lyapunov exponents
- Summary

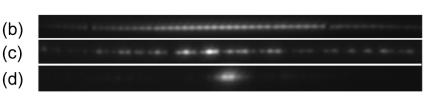
Interplay of disorder and nonlinearity

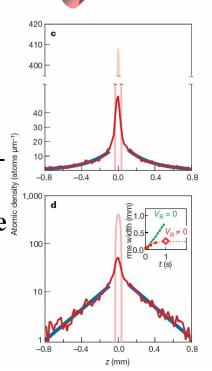
Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) - Pikovsky & Shepelyansky, PRL (2008) - Kopidakis et al., PRL (2008) -Flach et al., PRL (2009) - S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) - Bodyfelt et al., IJBC (2011)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL, (2008)]







<u>The Klein – Gordon (KG) model</u>

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.

<u>Linear case</u> (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

The discrete nonlinear Schrödinger (DNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \varepsilon_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

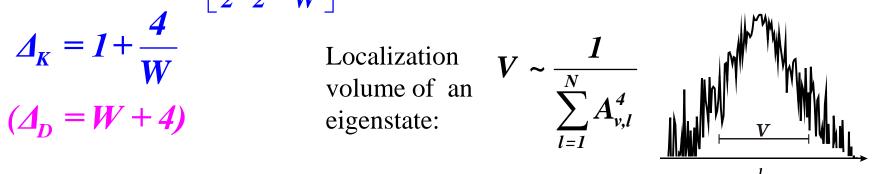
$$z_v \equiv \frac{E_v}{\sum_m E_m}$$
 with $E_v = \frac{1}{2} \left(\dot{A}_v^2 + \omega_v^2 A_v^2 \right)$, where A_v is the amplitude

of the vth NM (KG) or norm distributions (DNLS).

Second moment:
$$m_2 = \sum_{\nu=1}^{N} (\nu - \overline{\nu})^2 z_{\nu}$$
 with $\overline{\nu} = \sum_{\nu=1}^{N} \nu z_{\nu}$
Participation number: $P = \frac{1}{\sum_{\nu=1}^{N} z_{\nu}^2}$

measures the number of stronger excited modes in z_v . Single mode P=1. Equipartition of energy P=N.

Scales Linear case: $\omega_v^2 \in \left[\frac{1}{2}, \frac{3}{2} + \frac{4}{W}\right]$, width of the squared frequency spectrum:



Average spacing of squared eigenfrequencies of NMs within the range of a localization volume: $d_K \approx \frac{\Delta K}{V}$

Nonlinearity induced squared frequency shift of a single site oscillator

$$\delta_{l} = \frac{3E_{l}}{2\tilde{\varepsilon}_{l}} \propto E \qquad (\delta_{l} = \beta |\psi_{l}|^{2})$$

The relation of the two scales $d_{K} \leq \Delta_{K}$ with the nonlinear frequency shift δ_i determines the packet evolution.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

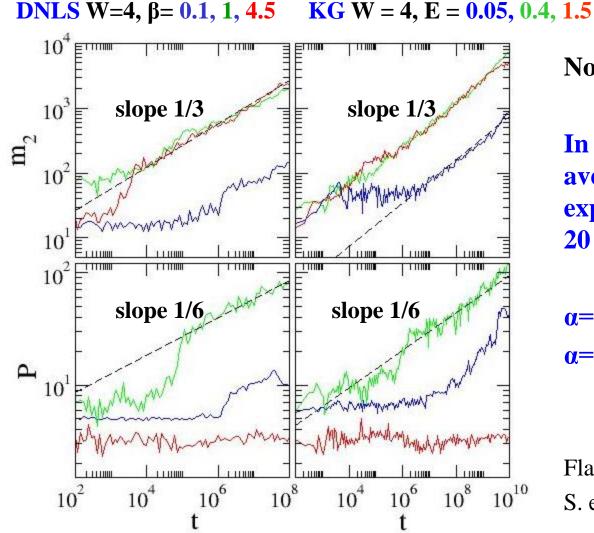
Intermediate Strong Chaos Regime: $d < \delta < \Delta$, $m_2 \sim t^{1/2} \longrightarrow m_2 \sim t^{1/3}$

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations



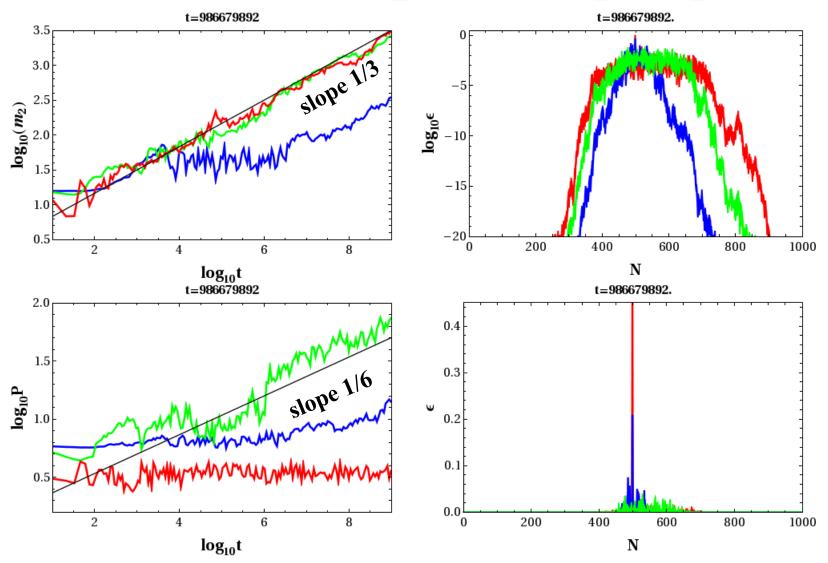
No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t^{α}) over 20 realizations:

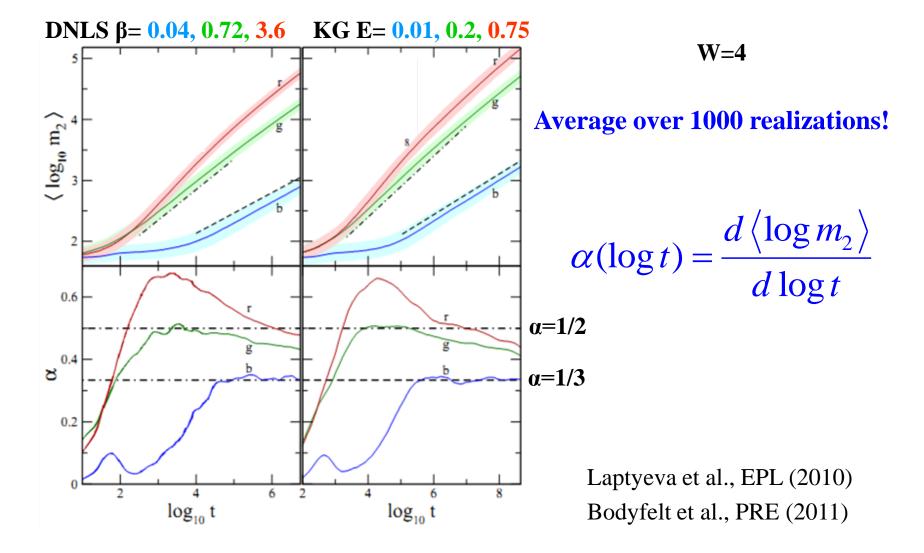
α=0.33±0.05 (KG) α=0.33±0.02 (DLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

KG: Different spreading regimes



Crossover from strong to weak chaos (block excitations)



Lyapunov Exponents (LEs)

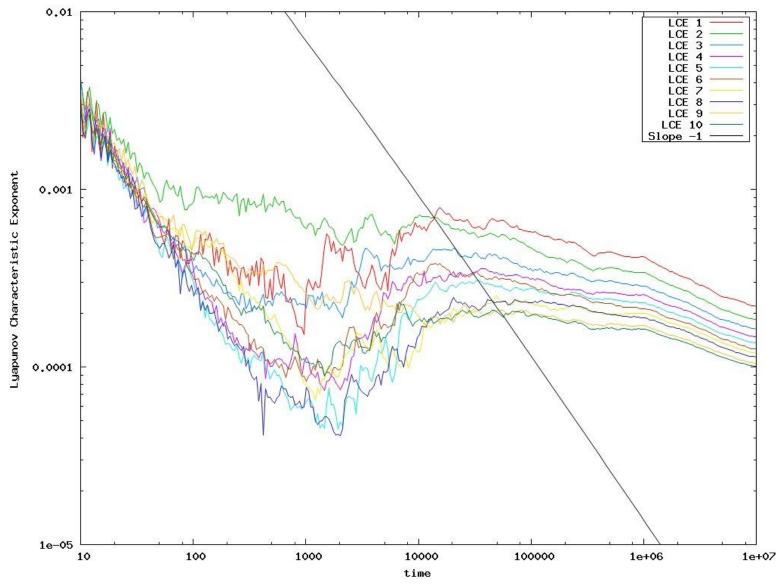
Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

$$\mathbf{mLCE} = \lambda_1 = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\left\| \vec{\mathbf{v}}(t) \right\|}{\left\| \vec{\mathbf{v}}(0) \right\|}$$

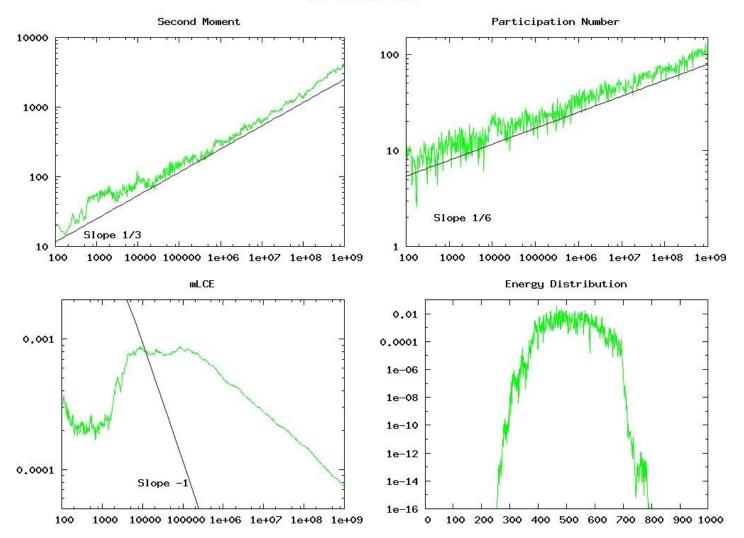
 $λ_1=0 → \text{Regular motion} ∝ (t^{-1})$ $λ_1 \neq 0 → \text{Chaotic motion}$

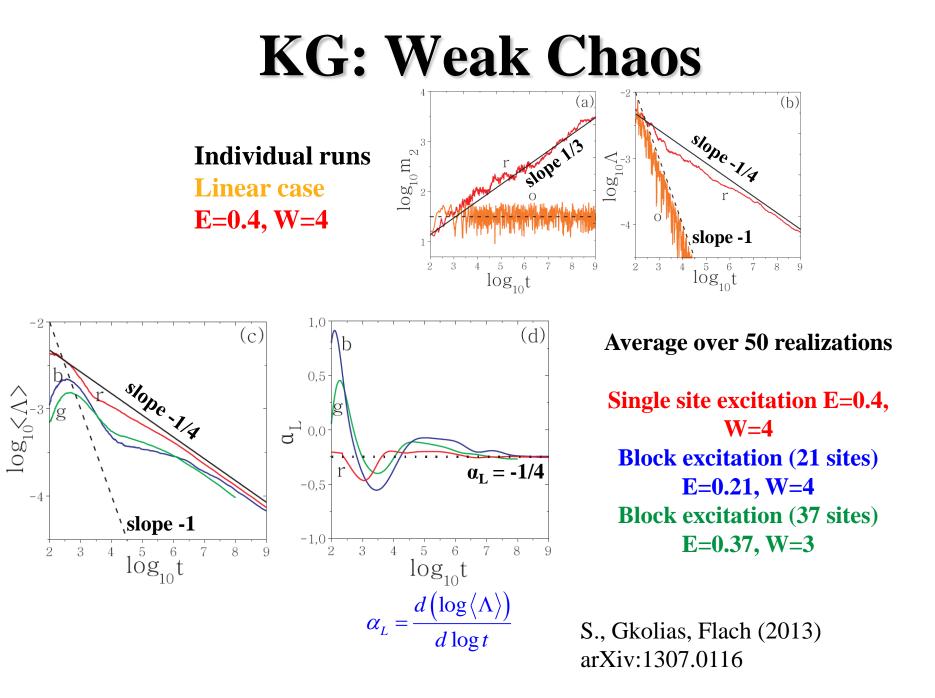
KG: LEs for single site excitations (E=0.4)



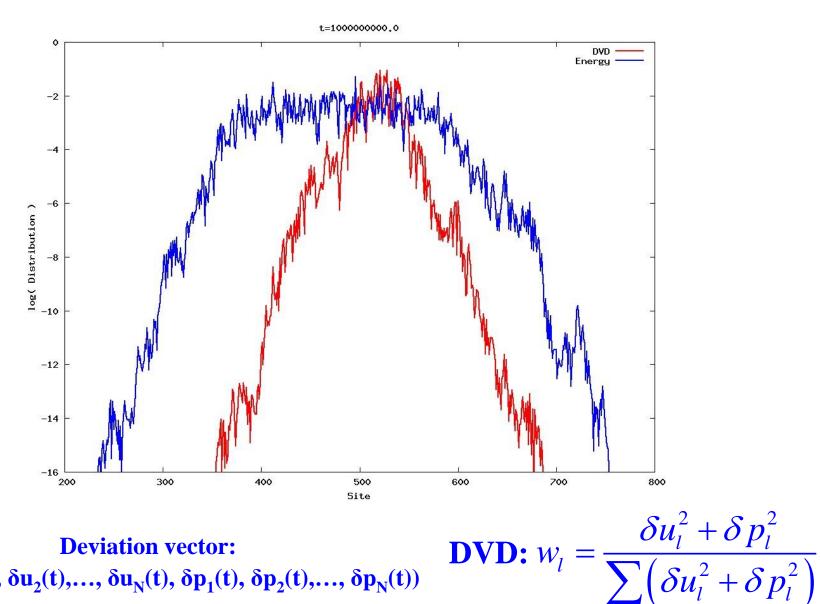
KG: Weak Chaos (E=0.4)

t = 100000000.00





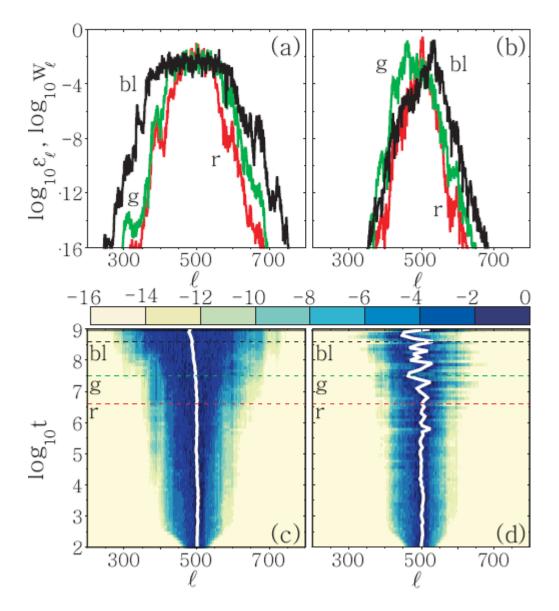
Deviation Vector Distributions (DVDs)



DVD: $w_l = -$

Deviation vector: $v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$

Deviation Vector Distributions (DVDs)



Individual run E=0.4, W=4

Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.

- We predicted theoretically and verified numerically the existence of three different dynamical behaviors:
 - ✓ Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$
 - ✓ Intermediate Strong Chaos Regime: d< δ < Δ , m₂~t^{1/2} → m₂~t^{1/3}
 - ✓ Selftrapping Regime: δ>∆
- Generality of results:
 - ✓ Two different models: KD and DNLS,
 - ✓ Predictions made for DNLS are verified for both models.
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.
- Our results suggest that Anderson localization is eventually destroyed by nonlinearity, since spreading does not show any sign of slowing down.

References

- Flach, Krimer, S. (2009) PRL, 102, 024101
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211
- S., Flach (2010) PRE, 82, 016208
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205
- Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) Int. J. Bifurc. Chaos, 21, 2107
- S., Gerlach, Bodyfelt, Papamikos, Eggl (2013) arXiv:1302.1788
- S., Gkolias, Flach (2013) arXiv:1307.0116

Thank you for your attention